Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
2554 measured reflections
2544 independent reflections
2189 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}$ not available (see below)

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.178$
$S=0.913$
2542 reflections
307 parameters
H atoms riding
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0708 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F^{2}\right) / 3$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$\theta_{\text {max }}=65^{\circ}$
$h=0 \rightarrow 10$
$k=0 \rightarrow 12$
$l=0 \rightarrow 31$
3 standard reflections every 100 reflections frequency: 60 min intensity decay: $<2 \%$
$(\Delta / \sigma)_{\max }=0.004$
$\Delta \rho_{\text {max }}=0.194 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.231 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected torsion angles $\left({ }^{\circ}\right)$

$\mathrm{Cl}-\mathrm{Ol}-\mathrm{Co}^{\prime}-\mathrm{Na}$	178.8 (5)
$\mathrm{Ol}-\mathrm{C} 0^{\prime}-\mathrm{Nl}-\mathrm{Cla}$	172.7 (4)
$\mathrm{CO}^{\prime}-\mathrm{Nl}-\mathrm{Cl} A-\mathrm{Cl}^{\prime}$	108.8 (5)
$\mathrm{N} 1-\mathrm{Cl} A-\mathrm{Cl}^{\prime}-\mathrm{N} 2$	167.8 (4)
$\mathrm{Cl} A-\mathrm{Cl}{ }^{\prime}-\mathrm{N} 2-\mathrm{C} 2 \mathrm{~A}$	173.5 (4)
$\mathrm{Cl}^{\prime}-\mathrm{N} 2-\mathrm{C} 2 \mathrm{~A}-\mathrm{C}^{\prime}{ }^{\prime}$	- 106.4 (5)
$\mathrm{N} 2-\mathrm{C} 2 A-\mathrm{C} 2 B-\mathrm{C} 2 \mathrm{D} 1$	-170.6(4)
$\mathrm{N} 2-\mathrm{C} 2 A-\mathrm{C} 2 B-\mathrm{C} 2 \mathrm{D} 2$	-47.6 (6)
$\mathrm{N} 2-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 2{ }^{\prime}-\mathrm{N} 3$	115.3 (4)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 2{ }^{\prime}-\mathrm{N} 3-\mathrm{C} 3 \mathrm{~A}$	-169.6 (4)
$\mathrm{C} 2^{\prime}-\mathrm{N} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3^{\prime}$	-100.0 (5)
$\mathrm{N} 3-\mathrm{C} 3 A-\mathrm{C} 3 B-\mathrm{C} 3 \mathrm{Gl}$	-67.9 (5)
C 3 - $33 B-\mathrm{C} 3 \mathrm{G1}-\mathrm{C} 3 \mathrm{G} 2$	77.5 (7)
$\mathrm{N} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3$ - O 4	-29.6 (6)

Table 2. Hydrogen-bonding geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	H \cdots A	D...A	$D-\mathrm{H} \cdots A$
N4-HIN4. . OO^{\prime}	0.86	2.10	2.917 (6)	159
N1-HINI...O2' ${ }^{\prime}$	0.86	2.11	2.937 (6)	161
$\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2 \ldots \mathrm{Ol}^{\prime \prime}{ }^{\text {i }}$	0.86	2.05	2.899 (5)	171
N3-H1N3..O3 ${ }^{\text {'.ii }}$	0.86	2.16	3.010 (5)	171

Symmetry codes: (i) $\frac{1}{2}+x, \frac{1}{2}-y, 2-z$; (ii) $x-\frac{1}{2}, \frac{1}{2}-y, 2-z$; (iii) $\frac{1}{2}+x,-\frac{1}{2}-y, 2-z$.
The title structure was solved by direct methods and refined by full-matrix anisotropic least squares assuming all H atoms riding in calculated positions with fixed isotropic U 's. The data collection was not continued beyond $\theta_{\text {max }}=65^{\circ}$ due to the large number of too-weak reflections, and also because of the sudden failure in the encoders of the goniometer device. $R_{\text {int }}$ was not available since the data collection and processing were carried out by a fees-for-service organization which sent only $h k l, F_{o}$ and $\sigma\left(F_{o}\right)$, and deleted the files before Acta Crystallographica Section C's requirements regarding $R_{\text {int }}$ became known. Since we used the TWIN option, the Flack parameter was suppressed.

Data collection: SDP (Frenz, 1978). Cell refinement: SDP. Data reduction: $S D P$. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP (Zsolnai, 1997). Software used to prepare material for publication: SHELXL93 and PARST (Nardelli, 1983, 1995).

SB thanks the CSIR, India, for the award of a senior Research Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1355). Services for accessing these data are described at the back of the journal.

References

Benedetti, E., Pedone, C., Toniolo, C., Nemethy, G., Pottle, M. S. \& Scheraga, H. A. (1980). Int. J. Pept. Protein Res. 16, 156-172.
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft University Press.
Konig, W. \& Geiger, R. (1970). Chem. Ber. 103, 788-792.
Matsuura, Y., Takano, T. \& Dickerson, R. E. (1982). J. Mol. Biol. 156, 389-409.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. University of Cambridge, England.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Rees, D. C., Lewis, M. \& Lipscomb, W. N. (1983). J. Mol. Biol. 168, 367-387.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Subramanian, E. \& Sahayamary, J. (1989). Int. J. Pept. Protein Res. 34, 134-138.
Zsolnai, L. (1997). ZORTEP. An Interactive ORTEP Program for Structure Illustration. University of Heidelberg, Germany.

Acta Cryst. (1998). C54, 1683-1685

4-(Dimethylaminomethylene)-2-(2-nitro-phenyl)oxazol-5(4H)-one

L. Vidayalakshmi, ${ }^{a}$ V. Parthasarathi, ${ }^{a}$ P. T. Perumal ${ }^{b}$ and V. J. Majo ${ }^{b}$
${ }^{a}$ Department of Physics, Bharathidasan University, Tiruchirapalli 620 024, India, and ${ }^{b}$ Chemical Laboratory, Central Leather Research Institute, Adayar, Chennai 600 020, India. E-mail: phys@bdu.ernet.in

(Received 13 August 1997; accepted II March 1998)

Abstract

The crystal structure of the title compound, $\mathrm{C}_{12} \mathrm{H}_{11^{-}}$ $\mathrm{N}_{3} \mathrm{O}_{4}$, has been determined as part of a study of the luminescent activity of oxazolin-5-ones [Singh \& Singh (1994). Indian J. Chem. 33B, 232-235]. The dihedral angle between the 2-oxazoline (4,5-dihydrooxazole) and phenyl rings is $12.48(8)^{\circ}$. A conjugation effect is observed in the dimethylaminomethylene moiety.

Comment

The numbering scheme of the title compound, (I), is shown in Fig. 1. Bond distances and angles for the

(I)
oxazoline ring and the dimethylaminomethylene moiety are within expected ranges (Leban et al., 1991; Ahmet et al., 1994). The bond distances of the nitro group [N O 1.212 (2) and 1.220 (2) \AA] are within expected values [N-O 1.217 (11) Å; Allen et al., 1987].

Fig. 1. Displacement ellipsoid plot of the title compound (H atoms omitted). Ellipsoids have been plotted at the 50% probability level.

Atoms C1A, C2, N3, C4 and C6 are coplanar. The deviation from 120° observed for the $\mathrm{C} 6-\mathrm{C} 4-\mathrm{N} 3$ bond angle [$128.9(2)^{\circ}$] of the oxazoline ring might be a consequence of repulsion between the lone pair of electrons on the N atom and the H atom of C 8 (Centore et al., 1996). A conjugation effect is observed in the dimethylaminomethylene moiety. The N4-C6 bond length of the aminomethylene moiety in the present structure is 1.314 (2) \AA.

The dihedral angle between the phenyl and oxazoline rings is $12.48(8)^{\circ}$. The nitro group is twisted from the plane of the phenyl ring. The angle between the plane of the $\mathrm{C}-\mathrm{NO}_{2}$ group and the phenyl ring is $108.61(7)^{\circ}$. The phenyl and oxazole rings adopt planar conformations, as evidenced by the torsion angles (Table 1).

Short intermolecular contacts are observed in (I): $\mathrm{O} 1 \cdots \mathrm{O} 5(-x+2,-y+2,-z+1) 3.329$ (3) and $\mathrm{O} 2 A \cdots \mathrm{~N} 2(-x+1,-y+1,-z) 3.186$ (2) \AA.

Experimental

N-(3,4-Dinitrobenzoyl)glycine (0.01 mol) was dissolved in 10 ml of dimethylformamide. The reaction mixture was cooled to. 273 K and phosphorus oxytrichloride (2.8 ml) was added dropwise with stirring. The reaction mixture was allowed to reach room temperature and was then poured onto crushed ice, filtered and dried. Recrystallization was performed from methanol (yield 85\%; m.p. 423 K).

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$
$M_{r}=261.24$
Triclinic
$P \overline{1}$
$a=8.049(2) \AA$
$b=12.756(2) \AA$
$c=6.209(2) \AA$
$\alpha=98.82(2)^{\circ}$
$\beta=100.94(3)^{\circ}$
$\gamma=93.99(2)^{\circ}$ 。
$V=615.3(3) \AA^{3}$
$Z=2$
$D_{x}=1.410 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Rigaku AFC-7S diffractometer
$\omega-2 \theta$ scans
Absorption correction:
ψ scan (North et al., 1968)
$T_{\text {min }}=0.979, T_{\text {max }}=0.989$
2469 measured reflections
2170 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.134$
$S=1.060$
2170 reflections
178 parameters
H atoms constrained
$w^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0751 P)^{2}\right.$ $+0.0784 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$

Mo $K \alpha$ radiation

$\lambda=0.7017 \AA$
Cell parameters from 25 reflections
$\theta=2-25^{\circ}$
$\mu=0.108 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rectangular
$0.20 \times 0.15 \times 0.10 \mathrm{~mm}$
Lustrous light orange
$\Delta \rho_{\text {max }}=0.437 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.464 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.050 (10)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$

$\mathrm{O1}-\mathrm{C} 2$	1.372 (2)	N4 C8	1.458 (2)
$\mathrm{OI}-\mathrm{C} 5$	1.413 (2)	N4-C7	1.467 (2)
N3-C2	1.286 (2)	C2A-C1A	1.391 (3)
N3-C4	1.398 (2)	C1A-C6A	1.397 (2)
O5-C5	1.211 (2)	C6A-C5A	1.388 (3)
C2-C1A	1.461 (2)	C5-C4	1.430 (3)
$\mathrm{N} 2-\mathrm{O} 2 \mathrm{~B}$	1.212 (2)	C4-C6	1.382 (2)
$\mathrm{N} 2-\mathrm{O} 2 \mathrm{~A}$	1.220 (2)	C3A-C4A	1.385 (3)
$\mathrm{N} 2-\mathrm{C} 2 \mathrm{~A}$	1.472 (2)	C4A-C5A	1.369 (3)
N4-C6	1.314 (2)		

$\mathrm{C} 2-\mathrm{O}-\mathrm{C} 5$	105.41 (13)	C2A-C1A-C6A	116.6 (2)
C2-N3-C4	105.21 (14)	$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 A-\mathrm{C} 2$	123.03 (15)
N3-C2-O1	115.49 (15)	$\mathrm{C} 6 A-\mathrm{C} 1 A-\mathrm{C} 2$	120.3 (2)
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 1 \mathrm{~A}$	127.5 (2)	C5A-C6A-C1A	121.0 (2)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{Cl} A$	116.96 (14)	O5-C5-O1	120.2 (2)
$\mathrm{O} 2 B-\mathrm{N} 2-\mathrm{O} 2 A$	124.5 (2)	$\mathrm{O} 5-\mathrm{C} 5-\mathrm{C} 4$	135.5 (2)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{N} 2-\mathrm{C} 2 A$	117.8 (2)	$\mathrm{OI}-\mathrm{C} 5-\mathrm{C} 4$	104.35 (14)
$\mathrm{O} 2 A-\mathrm{N} 2-\mathrm{C} 2 A$	117.7 (2)	C6- $\mathrm{C} 4-\mathrm{N} 3$	128.9 (2)
C6-N4-C8	123.16 (15)	C6-C4-C5	121.5 (2)
C6-N4-C7	120.2 (2)	N3-C4-C5	109.54 (15)
$\mathrm{C} 8-\mathrm{N} 4-\mathrm{C} 7$	116.6 (2)	N4-C6-C4	129.3 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 A$	122.8 (2)	$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 A-\mathrm{C} 4 \mathrm{~A}$	118.9 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 A-\mathrm{N} 2$	116.2 (2)	$\mathrm{C} 5 A-\mathrm{C} 4 A-\mathrm{C} 3 A$	120.0 (2)
$\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{N} 2$	120.93 (14)	$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 A-\mathrm{C} 6 \mathrm{~A}$	120.6(2)
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 2-\mathrm{O} 1$		0.2 (2)	
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 2-\mathrm{Cl} A$		-179.3 (2)	
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 3$		0.1 (2)	
$\mathrm{O} 2 B-\mathrm{N} 2-\mathrm{C} 2 A-\mathrm{C} 3 A$		70.3 (2)	
$\mathrm{O} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{C} 2 A-\mathrm{C} 3 \mathrm{~A}$		- 106.4 (2)	
$\mathrm{O} 2 B-\mathrm{N} 2-\mathrm{C} 2 A-\mathrm{Cl} A$		-112.3 (2)	
$\mathrm{O} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{C} 2 \mathrm{~A}-\mathrm{Cl} A$		71.0 (2)	
$\mathrm{N} 2-\mathrm{C} 2 A-\mathrm{Cl} A-\mathrm{C} 2$		6.0 (3)	
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 1 A-\mathrm{C} 2 \mathrm{~A}$		12.2 (3)	
$\mathrm{C} 2-\mathrm{Ol}-\mathrm{C} 5-\mathrm{O} 5$		-179.7 (2)	
$\mathrm{C} 2-\mathrm{O}-\mathrm{C} 5-\mathrm{C} 4$		-0.4 (2)	
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 6$		175.9 (2)	
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$		-0.4 (2)	
$\mathrm{O} 5-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 6$		3.0 (3)	
$\mathrm{O}-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 6$		-176.19(15)	
$\mathrm{O} 5-\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 3$		179.6 (2)	
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 3$		0.5 (2)	
C8-N4-C6-C4		0.2 (3)	
$\mathrm{C} 7-\mathrm{N} 4-\mathrm{C} 6-\mathrm{C} 4$		-177.9 (2)	
N3-C4-C6-N4		0.2 (3)	
C5-C4-C6-N4		176.2 (2)	
$\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{C} 4 A$		-3.1 (3)	
$\mathrm{N} 2-\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{C} 4 A$		174.3 (2)	
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 A$. 1.2 (3)	
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 A-\mathrm{C} 5 A-\mathrm{C} 6 A$		1.6 (3)	
$\mathrm{C} 1 A-\mathrm{C} 6 A-\mathrm{C} 5 A-\mathrm{C} 4 A$		-2.7(3)	

All non-H atoms were refined with anisotropic displacement parameters. All H atoms were placed in fixed positions.

Data collection: Rigaku AFC software. Cell refinement: Rigaku AFC software. Data reduction: TEXSAN (Molecular Structure Corporation, 1995). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP (Zsolnai, 1997). Software used to prepare material for publication: SHELXL93. Geometric calculations: PARST (Nardelli, 1983).

LV thanks UGC, India, for the award of the FIP fellowship for 1996-1997.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1078). Services for accessing these data are described at the back of the journal.

References

Ahmet, M. T., Silver, J. \& Houlton, A. (1994). Acta Cryst. C50, 1814-1818.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Centore, R., Ciajolo, M. R. \& Tuzi, A. (1996). Acta Cryst. C52, 14991503.

Leban, I., Svete, J., Stanovnik, B. \& Tisler, M. (1991). Acta Cryst. C47, 1552-1554.

Abstract
The title compound, $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}$, having an ethoxycarbonyl group at C 2, serves as an important precursor in the synthesis of fused-indole heterocycles of biological importance. The indole moiety is planar and it forms dihedral angles of $2.3(1)$ and $3.9(1)^{\circ}$ with the ethoxycarbonyl group at C2 and the ethoxy group at C.5, respectively. The centrosymmetrically related molecules are held together by hydrogen bonds across a centre of symmetry and form dimers.

Comment

Indole derivatives have important pharmacological uses because of the range of anti-allergic, central nervous system depressant and muscle relaxant properties (Harris \& Uhle, 1960; Wei \& Stanley, 1970; Reynolds \& Carson, 1970; Ho et al., 1986).

The indole ring of the title compound, (I), is planar, with a maximum deviation of 0.007 (5) \AA from the best plane. The ethoxy group at C 5 and the ethoxycarbonyl group at C 2 are inclined with respect to the mean plane of indole at angles of $3.9(1)$ and $2.3(1)^{\circ}$, respectively. The methyl group at C3 is in the plane of the indole moiety, with a deviation of 0.018 (2) \AA.

